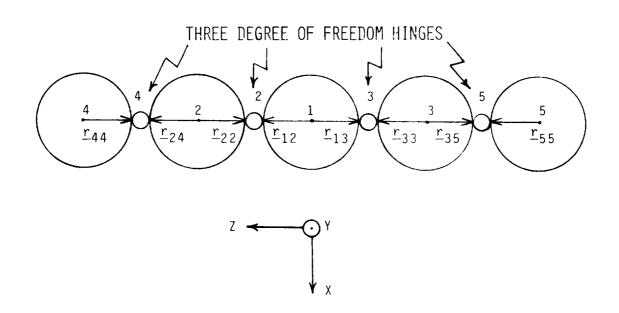
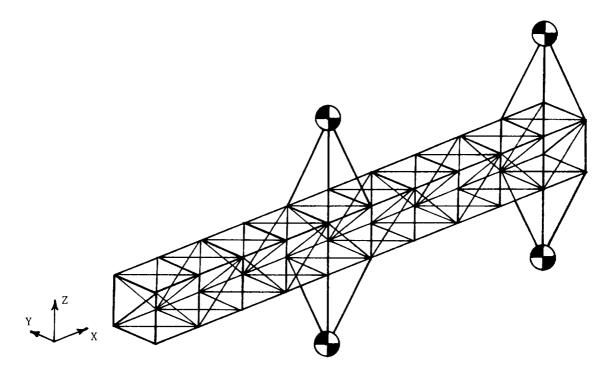
MODULAR ATTITUDE CONTROL

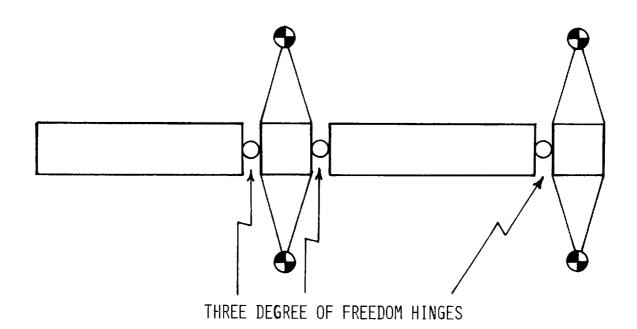
OF A LARGE SPACE PLATFORM

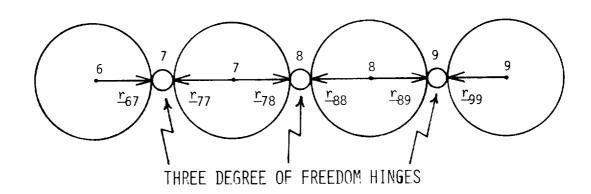

F. D. Chichester
The Bendix Corporation
Corporate Computer Center
Test Systems Division
Teterboro, New Jersey

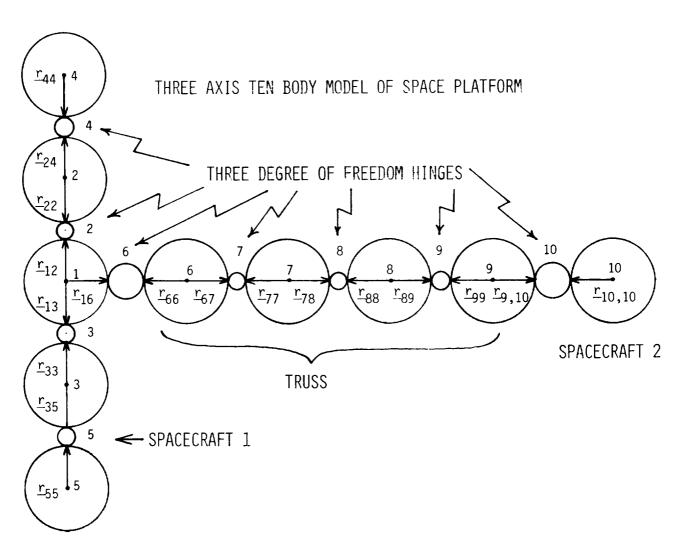
Large Space Systems Technology - 1981 Third Annual Technical Review November 16-19, 1981


MODULAR ATTITUDE CONTROL OF A LARGE SPACE PLATFORM

- o STATE VARIABLE MODEL
- o DECOMPOSED MODEL
- o DECOMPOSED PERFORMANCE INDEX
- o DECOMPOSED HAMILTONIAN
- o COSTATE EQUATIONS
- o CONTROL EQUATIONS
- o TPBV FORMULATION OF FIRST LEVEL SUBPROBLEMS
- o SECOND LEVEL COORDINATION SUBPROBLEMS
- o SUBPROBLEM HIERARCHY


THREE AXIS FIVE BODY MODEL OF A FLEXIBLE SPACECRAFT


PERSPECTIVE VIEW OF HYBRID DEPLOYABLE TRUSS



FIRST APPROXIMATION OF TRUSS

THREE AXIS FOUR BODY MODEL OF TRUSS

THE jTH TPBV SUBPROBLEM

$$\frac{\dot{x}_{j}}{} = A_{jj} \frac{x_{j}}{} + R_{j} \frac{\lambda}{}_{j} + \frac{\hat{a}_{j}}{} (t)$$

$$\frac{\dot{\lambda}_{j}}{\Delta_{j}} = -Q_{j}\frac{x}{j} - A_{j}^{T}\frac{\lambda}{j} + \frac{\hat{b}}{D_{j}}(t)$$

where

$$\frac{\hat{a}_{j}(t) = \sum_{k=1}^{3} (A_{jk} d_{j}^{k} + B_{jk} d_{j}^{k} - B_{jj} d_{j}^{k}) \qquad \qquad \frac{\hat{b}_{j}(t) = Q_{j} d_{j}^{k} d_{j}^{k} - \sum_{k=1}^{3} d_{j}^{k} \qquad \qquad R_{j} = -B_{jj} d_{ju}^{-1} B_{jj}^{T} d_{ju}^{T} d_{jj}^{T} d_{ju}^{T} d_{jj}^{T} d_{jj}^{$$

 $\underline{\mathbf{x}}_{\mathbf{j}}(t_{\mathbf{0}}) = \underline{\mathbf{x}}_{\mathbf{j}\mathbf{0}}$ (initial boundary conditions)

 $\underline{\lambda}_{i}(t_{f}) = 0$ (final boundary conditions)

$$\frac{\lambda(t) = K(t)x(t) + m(t)}{2}$$

STATE VARIABLE ROTATIONAL DYNAMICS MODEL

$$\frac{\dot{x}}{j} = \sum_{k=1}^{3} (A_{jk} + B_{jk} u_{k})$$
 j = 1, 2, 3 k = 1, 2, 3

where:

 \underline{u}_k (k = 1, 2, 3) has scalar expansion of the same form as $\underline{\omega}_k$.

$$\underline{\alpha}_{1} = (\phi_{1}, \Delta \phi_{12}, \Delta \phi_{13}, \Delta \phi_{24}, \Delta \phi_{35}, \Delta \phi_{16}, \Delta \phi_{67}, \Delta \phi_{78}, \Delta \phi_{89}, \Delta \phi_{9,10})^{T}$$

$$\underline{\alpha}_{2} = (\theta_{1}, \Delta \theta_{12}, \Delta \theta_{13}, \dots, \Delta \theta_{9,10})^{T}$$

$$\underline{\alpha}_{3} = (\psi_{1}, \Delta \psi_{12}, \Delta \psi_{13}, \dots, \Delta \psi_{9,10})^{T}$$

MULTILEVEL STATE VARIABLE MODEL

$$\frac{d^{k}}{dj} = \frac{x_{k}}{k} \qquad \qquad \frac{s^{k}}{j} = \frac{u_{k}}{k} \qquad \qquad k \neq j = 1, 2, 3$$

DECOMPOSED PERFORMANCE INDEX AND HAMILTONIAN

$$J = \sum_{j=1}^{3} \int_{t}^{t} P_{j} dt$$
where:

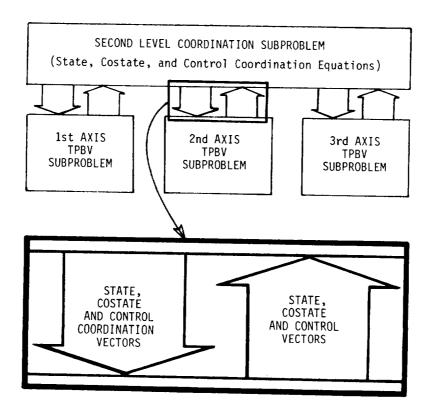
$$P_{j} = \frac{1}{2} (\underline{x}_{j} - \underline{x}_{jd})^{T} Q_{j} (\underline{x}_{j} - \underline{x}_{jd}) + \frac{1}{2} \underline{u}_{j}^{T} W_{ju} \underline{u}_{j} \qquad \underline{x}_{jd}^{**} \text{ prespecified desired value of } \underline{x}_{j}$$

$$Q_{j} = \text{positive definite state variable error weighting coefficient matrix}$$

$$W_{ju} = \text{positive definite control energy weighting coefficient matrix}$$

$$H = \sum_{j=1}^{3} H_{j}$$
where:
$$H_{j} = P_{j} + \lambda_{j}^{T} \left[A_{j,j} + B_{j,j} + \sum_{k=1}^{3} (A_{j,k} + B_{j,k} + B_{j,k}) \right] + \sum_{k=1}^{3} (\underline{\rho_{j}^{k}})^{T} (\underline{x_{j}} - \underline{d_{k}^{j}}) + (\underline{\upsilon_{j}^{k}})^{T} (\underline{u_{j}} - \underline{s_{k}^{j}})$$

$$k \neq j$$


COSTATE EQUATIONS

$$\begin{split} & \frac{\dot{\lambda}_{j}}{\dot{\lambda}_{j}} = -\frac{\partial H}{\partial \underline{x}_{j}} = -A_{jj}^{T} \underline{\lambda}_{j} - Q_{j} (\underline{x}_{j} - \underline{x}_{jd}) + \underline{b}_{j}(t) \\ \text{where:} \\ & \underline{b}_{j}(t) = -\sum_{\substack{k=1\\k\neq j}}^{S} \underline{\rho}_{j}^{k} & \underline{\lambda}_{j}(t_{f}) = 0 \quad \text{(final boundary conditions)} \end{split}$$

CONTROL EQUATIONS

$$\frac{\partial H}{\partial \underline{u}_{j}} = 0 + \underline{u}_{j} = -W_{ju}^{-1}(B_{jj}^{T}\underline{\lambda}_{j} + \sum_{k=1}^{3}\underline{\nu}_{j}^{k})$$

SUBPROBLEM HIERARCHY FOR HYBRID MULTILEVEL-LQR ATTITUDE CONTROL OF THREE AXIS MODEL

REFERENCES

- 1. Chichester, F.D., "Development of a Three Axis Gauss-Seidel Multilevel Model of a Flexible Space Vehicle," <u>Proceedings of the Twelfth Annual Pittsburgh Conference on Modeling and Simulation</u>, April 1981, University of Pittsburgh, Pittsburgh, Pennsylvania, pp. 1303-1308.
- 2. Chichester, F.D., "Application of Gauss-Seidel Multilevel and LQR Control to a Three Axis Rotational Model of a Flexible Space Vehicle," Proceedings of the Twelfth Annual Pittsburgh Conference on Modeling and Simulation, April 1981, University of Pittsburgh, Pennsylvania, pp. 1309-1315.
- 3. Chichester, F.D. and M.T. Borelli, "A Multilevel Control Approach for a Modular Structured Space Platform," <u>Spacecraft Guidance and Control</u>, AGARD. (To be published.)